
Software
Factory A reference architecture

to securing the software
supply chain

Secure
The

BY CNCF TAG SECURITY

https://github.com/cncf/tag-security

The Secure Software Factory

Contents

Introduction ..3

Problem Scope: Software Supply Chain Security .. 3

How to Read This Document ... 5

The Secure Software Factory ...6

Components of the SSF .. 8

The Variables—Inputs and Outputs to and from the SSF ... 10

Inputs ... 10

Outputs .. 12

Secure Software Factory Functionality .. 12

Appendix A: Inputs and Outputs Summary ..16

Inputs ... 16

Outputs .. 16

Appendix B: Best practices x Reference Architecture ..17

Appendix C: Glossary ..20

Contributors ...20

Acknowledgements ..21

References ..21

2

The Secure Software Factory

Introduction
A software supply chain is the series of steps performed
when writing, testing, packaging, and distributing appli-
cation software to end consumers. Given the increased
prominence of software supply chain exploits and
attacks, the Cloud Native Computing Foundation (CNCF)
Technical Advisory Group for Security published a white-
paper titled “Software Supply Chain Best Practices”,1
which captures over 50 recommended practices to
securing the software supply chain. That document is
considered a prerequisite for the content described in
this reference architecture.

This publication is a follow-up to that paper, targeted at
system architects, developers, operators, and engineers in
the areas of software development, security and compli-
ance. This reference architecture adopts the “Software
Factory” model2 for designing a secure software supply
chain.

This reference architecture has been produced after a
thorough evaluation of available tooling as of early 2022.
The components selected are open source, cloud native,
and prioritise security.

Problem Scope: Software
Supply Chain Security
The practices that the “Software Supply Chain Best
Practices” whitepaper captures are predicated on four over-
arching principles:

• Defence in depth (Layered end-to-end security controls)

• Signing and Verification

• Artifact Metadata Analytics

• Automation

Those four principles are in turn applied and organised
around five functional areas deemed as the entities in a
software factory:

When thinking about how to secure those entities, there are
two broad ways of organising security controls:

1. Around three critical concerns:

1.1. Provenance verification: assurance that existing
assumptions of where and how an artifact orig-
inates from are true and that the artifact or its
accompanying metadata have not been tampered
with during the build or delivery processes.

1.2. Trustworthiness: assurance that a given artifact
and its contents can be trusted to do what it is
purported to do (ie, is suitable for a purpose). This
involves judgement on whether the code is safe to
execute and making an informed decision about
accepting the risk that executing the code presents.

1.3. Dependencies: recursive checking of an artifact’s
dependency tree for trustworthiness and prove-
nance of the artifacts it uses.

1. By stages of activity (see diagram):

1.1. Pre-Build: principally concerned with development
and handling of the source code and with the collec-
tion and storage of dependencies.

1.2. Build: the process of building, testing, and
packaging an artifact according to its build
specifications.

1.3. Post-Build: principally concerned with the storage,
delivery, deployment, continuous verification.

Source Code Dependencies Build
Pipelines Artifacts Deployments

1 Markdown version of the Software Supply Chain Best Practices paper can be found at https://github.com/cncf/tag-security/blob/main/supply-chain-
security/supply-chain-security-paper/sscsp.md and is referenced throughout this document for convenience of navigation

2 https://en.wikipedia.org/wiki/Software_factory

3

https://github.com/cncf/tag-security
https://github.com/cncf/tag-security
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md
https://en.wikipedia.org/wiki/Software_factory

The Secure Software Factory

In the matrix below, we attempt to overlay these entities, concerns, and activity stages with one another:

Stages Pre-Build Build Post-Build

Entities: • Source Code:
Development and Handling

• Materials: Selection,
Collection, and Storage

• Source Code and
Dependencies: As Inputs

• Build Pipelines: Components
performing the build

• Artifacts: As outputs

• Artifacts: Storage and
Verification

• Deployments: Verification of
artifacts

Concerns: • Provenance: Developer
Contributions, Dependency
Definitions

• Trustworthiness:
Developer Contributions

• Dependencies:
Dependency provenance
and trustworthiness

• Provenance: Integrity of the
build, collection of metadata
and attestations, signing of
artifacts

• Provenance: Verification of
Attested Metadata

• Trustworthiness: Consumer
judgement of artifact’s worth

• Dependencies: Recursive
analysis of both Provenance and
Trustworthiness by consumers

4

The Secure Software Factory

This reference architecture focuses specifically on the
critical concern of provenance and primarily on the activity
stage of the “build.” There are numerous other publications
and guides which address issues around trustworthi-
ness, including practices like SAST/DAST scanning, code
signing, etc, including the CNCF Software Supply Chain Best
Practices Paper. We direct readers to these documents for
more information on those facets of supply chain security.

Our decision to emphasize provenance and the build
pipeline in this paper is based on the foundational role
provenance verification plays in other supply chain security
concerns. Provenance provides an attestation that an
output was derived from the claimed inputs. If you are
relying on the results of SAST/DAST scans of a software
artifact to inform your decision on its trustworthiness, you
need to know that those claims are accurate. By validating
that provenance came from a trusted party’s identity, you
get a level of assurance that those claims are accurate. An
identity is provided by a system or user signing the prove-
nance and a trusted identity is one certified by the end user
for a specific purpose. All of these claims are foundational
to being able to make informed decisions about an artifact’s
trustworthiness: you need to know the provenance attes-
tation has been signed, and that signature is by a trusted
identity, which has been certified for a specific task.

How to Read This Document

This paper offers a high-level treatment of a secure
software factory. This is designed to explain the necessary
interfaces and control structures for each component of
a software factory to generate verifiable provenance. The
theoretical treatment in this architecture should provide
guidance on what features and/or configurations are
required, which will allow readers to pick the tools they
prefer to create their secure software factory.

This document also provides multiple suggestions around
how the components in the Secure Software Factory should
be configured and managed for secure operation. Some
practices must be followed in order to satisfy the definition
of the SSF, however many of the practices and how they are
followed is dependent on the risk appetite of a project or
organization.

5

https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md

The Secure Software Factory

The Secure
Software Factory
“Architects look at thousands of buildings during their
training, and study critiques of those buildings written by
masters. In contrast, most software developers only ever
get to know a handful of large programs well—usually
programs they wrote themselves—and never study the great
programs of history. As a result, they repeat one another's
mistakes rather than building on one another's successes.”

— THE ARCHITECTURE OF OPEN SOURCE APPLICATIONS

The subsequent sections detail how a Secure Software Factory
ought to be structured and how its different parts interact.

Key Diagrams
Secure Software Factory Landscape
The Secure Software Factory (SSF) fits in an organiza-
tion’s software and IT environment. Within that envi-
ronment, the SSF has both upstream and downstream
dependencies. Upstream, the SSF depends on Identity
and Access Management for both human users and other
software services. During a pipeline run, the SSF relies
on Source Code Control for fetching the code to be built
and on Artifact Storage for dependencies required for the
build. It also relies on Identity and Access Management for
providing identities to the components making up the SSF.
Downstream, the SSF is depended on for providing attesta-
tions and signatures regarding artifacts which can be used
by production systems to determine artifact provenance
and make policy decisions about artifact deployment.

Secure Software Factory Components/Elements
FIGURE 2 shows how the various services running inside
of the Secure Software Factory interact with each other,
and a portion of the external services they depend on. The
diagram is simplified, and doesn’t show every interaction
between each tool. For example, in a real environment,
Runtime Visibility monitors more than just the Build
Environment. The remainder of this document illustrates
how the services interact and function in further detail.

FIGURE 1

Secure Software Factory Landscape

Legend

How to read relationships (arrows):
Arrows show the initiator of actions in the system. For instance,
an arrow pointing to a system A ---> B means that A is initiating
an interaction with B, therefore A has the responsibility to start
the action. This arrow notation should not be read as a data flow,
though the arrow can highlight the context for the interaction.

For example, the following example:

“[The Application] — retrieves-data-from -----> [The DB]”

Is read:

“The application retrieves data from the DB.”

Person
Software
System

Software
System
Eternal Relationship

6

The Secure Software Factory

FIGURE 2

Secure
Software
Factory
Components/
Elements

FIGURE 3

Pipeline Run
Example

7

The Secure Software Factory

Pipeline Run Example
FIGURE 3 is intended to show an example Pipeline Run inside
the SSF. Each step includes a validation call to an admission
controller. We have left this out of the above diagram for
better visual clarity. Some tasks might interact with other
external services outside the scope of the SSF. The exact
number of tasks depends on the requirements of your project.

There are a few important takeaways from FIGURE 3.

• The Pipeline Observer records what Tasks occur in
what order.

• The Tasks interact with a form of Runtime Build
Storage during normal operation.

• The storage in some cases might be shared between
tasks, while in other cases it might not. For additional
guidance on shared storage configuration, please
refer to the CNCF Supply Chain Security Best Practices
whitepaper. Additional storage guidance is provided
with the CNCF Storage Whitepaper.

Not every task will provide attestation or additional
metadata, but those that do support this capability should
be signed and securely stored in a source of truth. This is
due to factors such as the ability to reliably instrument the
metadata (e.g. can’t observe self or no hardware/software
interfaces to do so), or in cases where metadata produced is
not actionable.

Components of the SSF
The SSF that manufactures secure software can be broken
down into several categories of components, like that of
a regular factory. These are the core components, the
management components and the distribution compo-
nents. The core components are responsible for the central
task of the Secure Software Factory: taking the inputs of the
factory and processing them to create the output artifacts.
The management components ensure that the factory runs
in accordance with policy. It ensures that the processes
of the factory are validated in the right way, and provides
evidence and documentation of the outputs of the factory.
The distribution components are in charge of moving the
products of the factory to where they can be made available
for usage, as well as to provide guidance and tools to ensure
that outputs of the factory are consumed safely.

The “Core” Components
The core components can further be classified into 3 stages:
the Scheduling and Orchestration Platform, which runs all the
other components, the Pipeline Framework, which details the
basic layout of the build pipeline, and the Build Environments,
which perform the actions defined in the pipeline.

Scheduling and Orchestration Platform
A Secure Software Factory seeks to run its components in
the most secure way possible. All other components of the
SSF leverage this platform to schedule their jobs to perform
their respective actions.

For additional guidance on scheduling and orchestration,
please refer to the CNCF Cloud Native Security Whitepaper.

Pipeline Framework and Tooling
Pipelines are a core part of the SSF as they encode the
concrete workflow for building the software artifacts. This
typically follows a Continuous Integration (CI) workflow, i.e.
repeatable and declaratively defined sets of tasks intended
to download, build, and test code. In a cloud native context,
the pipeline tooling uses a scheduling and orchestration
platform to run each task in a container.

Given that the pipeline is running on the scheduling and
orchestration platform, it must be treated as any other
workload the platform manages, including being subject
to the same security requirements and measures. At a
minimum, all container images used in the pipeline must be
subject to signature verification and scanned for any known
vulnerabilities.

Build Environments
The build environment is the actual container(s) or worker(s)
where the source code is turned into a machine-usable
software product, which we refer to as an artifact. Existing CI
frameworks typically follow ephemeral execution patterns,
wherein a new instance is created only for the lifetime of
each execution job. This pattern should be further extended
to create a new instance of the scheduling platform to
host every new build pipeline. The build environment must
generate evidence and an automated attestation about the
input parameters, actions, and tools used during the build,
such that they can be independently validated to assure
build security.

8

https://github.com/cncf/tag-security/blob/main/security-whitepaper/CNCF_cloud-native-security-whitepaper-Nov2020.pdf

The Secure Software Factory

The “Management” Components
A SSF will use a Policy Management Framework to enforce
various controls and gates. This should include policies
around identities of users who may invoke the pipeline,
worker nodes where the pipeline should be executed, and
container images that can be used in the pipeline. These
policies are dependent on the risk appetite of the organi-
zation or project. It will then utilize a series of monitoring
components to verify conformity with these policies: Node
Attestors, Workload Attestors, and Pipeline Observers.

Policy Management Framework
A SSF needs policies that define the actors for each step in
the build process. For example, a policy might define the
actor (human or otherwise) authorized to sign metadata for
a particular task. These policies are important at the time
of verification within, for example, an admission controller,
where they are used to validate that the right actors
performed the respective tasks.

Policies should follow cloud native and supply chain
security best practices. For more information on policy
management and good policy concepts, refer to the CNCF
SIG-Security K8s Policy Management Whitepaper.

Attestors and Observers
There are three basic components of the SSF which monitor
or attest to policy adherence:

• Node Attestors verify the identity (and authenticity)
of the node, authenticating a node’s request for its
identity document

• Workload Attestors verify the identity (and
authenticity) of the workload process on a node,
authenticating a workload’s request for its workload
identity document

• Pipeline Observers, which capture the verifiable
metadata from pipeline processes.

Node attestors and workload attestors work in conjunction
to ensure the node selected for running the work is autho-
rized to host that workload and that it is not compromised.
Pipeline observers then build upon this evidence by gener-
ating additional metadata about individual tasks executed in
the pipeline to provide comprehensive assurance across the

build process. This synthesis allows later steps to validate
that previous steps were completed as expected and
provides a level of guarantee around the provenance claims
and legitimacy of the final artifacts from the SSF.

All metadata from Node Attestors, Workload Attestors, and
the Pipeline Observer should be signed and included as part
of the metadata documents output from the SSF.

The “Distribution” Components
Upon completion of a pipeline run, the SSF outputs several
artifacts. Artifacts must be available to downstream consumers
and securely stored. Signatures for artifacts should also be
stored such that they can easily be found and verified. These
signatures can be stored, for convenient discoverability and
distribution, alongside the artifact or in a separate location.

Artifact Repository
The Artifact Repository stores artifacts the SSF outputs.
This repository should be accessible from both the build
and deploy environments. The stored artifacts may include
container images, Helm charts, SBoMs, and their corre-
sponding signatures. In some cases, the artifact repository
can also serve as the storage location for metadata, such as
SBoMs, attestations, and signatures. In other cases, users may
prefer to store these items separately or in multiple locations.

Admission Controller
An Admission Controller in the SSF limits what workloads
can be run in the SSF’s Scheduling and Orchestration
Platform. “Admission control”, in a general sense, is the act
of enforcing policies around the consumption of compo-
nents in a system.

In the SSF, there are multiple levels at which admission
control must occur:

• Enforcing policies on the sources and packages
pulled into a build, including “intermediate artifacts”
passed between steps in the build pipeline. For example,
evaluating whether these objects have been properly
signed or came from a known and trusted party.

• Enforcing policies around the components of the
factory itself. The scheduling and orchestration
platform should perform admission checks to ensure
all such components are trusted and verifiable.

9

https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md

The Secure Software Factory

• Enforcing policies on the build steps. This typically
includes verifying pipeline definitions and all the
referenced images to be used during execution.

In order of execution, admission control proceeds as follows:

1. When admitting the build request, the Admissions
Controller validates that steps satisfy defined policies.

2. When steps that fetch dependencies are executed,
the Admission Controller must enforce policies on the
dependencies that are sourced into the environment
(e.g. source, binary dependencies, base images).

3. When steps execute user-provided code, the Admission
Controller uses a network jail to enforce an “admit nothing”
policy because we do not trust that code to self-regulate.

4. When steps that publish artifacts are executed, they
must produce attestations to satisfy the Admission
Controllers that may be encountered downstream.

Outside of simple build execution, relevant areas to admis-
sion control include:

• The components that are “admitted” to the node host
environments

• Policy enforcement on the build control plane (incl.
admission control), which recurses (who watches the
watchers?).

In addition to the above inputs, it is assumed that the
following checks are being handled when deploying to
production.

• Security controls for admission controller itself (identity
of the controller and validation)

• Metadata inputs for different policies

• Diff signatures or policies validation (interface with CA’s
for validating certs), Notary services

• Enforcement points

• Interfaces with Signing services/notary service/signature
validation services

• Mutating the definition of workloads to include
additional metadata

• Outputs or error messages after enforcement/blocking
admission

• Signing check as a label that could be used by a workload
attestor to grant access to signing keys.

Note: Artifact signatures should be verified against the
associated public keys before deployment. Any generated
provenance information should also be verified.

The Variables—Inputs and
Outputs to and from the SSF

Inputs
Source Code
Source code encompasses the human readable represen-
tation of applications being built by the Secure Software
Factory, associated dependencies being built from source
or that are interpreted instead of compiled, code for
the build pipelines (Pipeline-as-Code) and infrastructure
(Infrastructure-as-Code). Source code is the primary input
for the SSF. The users and operators of the SSF must decide
what programming languages they support, where to host
source code, and what tools to integrate for testing and
scanning. The SSF assumes that source code uses version
control systems like Git, which have a preserved history, and
that the repository has an appropriate regime for review
and testing in place that is appropriate for the needs and
use cases of the repository. For securing the source code
see recommendations that can be found in the “Source
Code” section of CNCF Supply Chain Security Best Practices
whitepaper.

Software Dependencies
Almost all software depends on other software which needs
to be collected before building the target software. These
dependencies should be validated against a security policy.
It is recommended to pin to validated attestations or signa-
tures of dependencies if available in order to validate that
it was built by a trusted identity. In addition, it is recom-
mended to pin to the checksum of upstream dependencies
in order to ensure you are pulling the exact version you
expect.

Software dependencies carry with them serious risks that
are too often overlooked. The shift to easy, fine-grained
software reuse has happened so quickly that we do not
yet understand the best practices for choosing and using
dependencies effectively, or even for deciding when they are
appropriate and when not.

10

https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md#securing-the-source-code
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md#securing-the-source-code
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md#securing-the-source-code

The Secure Software Factory

For both security and availability, it’s recommended to
maintain a local mirror of any external dependencies. This
mirror may be limited to only dependencies that have
passed a security scan or trusted and curated source of
truth. The mirror also prevents downtime if the upstream
repository becomes unavailable and provides a single
network endpoint to secure for dependency ingestion.

More recommendations and specifics on securing depen-
dencies can be found in the “Materials” section of the CNCF
Supply Chain Security Best Practices whitepaper.

User Credentials
User credentials are identifiers for both human users and
services (e.g. automation agents) and can authenticate
these actors at multiple points in the SSF and its supporting
services. Credentials should meet baseline security require-
ments as defined in the CNCF Supply Chain Security Best
Practices whitepaper.

Cryptographic Material
Cryptographic material input into the SSF fall into two
categories:

1. Materials used for identification of a particular entity.

2. Materials used for attestation/verification of a particular
activity.

The first category includes certificates, tokens, and keys
used for authenticating nodes, scheduling and orchestra-
tion platforms, workloads, services, and users. It might
also include certificates corresponding with recognized
Certificate Authorities and trust bundles for validating and
cross- authenticating all of these materials.

The second category includes material such as signing keys
deployed by users or services to attest to the work they
have performed. Unlike traditional signing architectures, the
modern software factory doesn’t directly use a single signing
key. Multiple signing keys have trust delegated to a specific
domain, processes/users/services to limit the impact of a
compromised key.

All cryptographic materials must conform and comply with
standards for their type and purpose and are generated
in a cryptographically secure manner. In addition, they
should also expire based on the lifetime of their purpose

and security and access control policy. We assume that they
are securely distributed to the necessary entities and are
properly configured for use by those entities. The specific
mechanisms for producing, signing, and distributing these
certificates will be left to the user to implement and are
beyond the scope of this paper.

Pipeline Definitions
CI/CD pipelines define the steps in the application build
process. The specific implementation of a pipeline will vary
from organization to organization. However, all pipeline
definitions should follow security best-practices that include:

1. Persistence & Source Control: Pipeline definitions
should be defined as “code” (Pipeline-as-Code) in a
declarative fashion, and as such, must meet all the
security expectations for source code defined above.
Additionally, pipeline definitions must be managed
through a source control process (ie, git) that limits
changes to only authorized users following standard
protocols (ie, submitting changes via a pull request)
and code reviews, partnering with security engineering,
along with the particular tools being used. Once your
pipeline assembly is complete, make sure to persist all
relevant artifacts.

2. Sign Pipeline Definitions: Sign your pipeline defini-
tions to ensure non-repudiation. During signing, sign
pipeline specifications including all the images used for
execution.

3. Pipeline Audit: Perform regular audits of your pipeline
definitions to ensure the integrity of the pipeline is
maintained.

4. Static Scan: Pipelines typically need access to various
user credentials that are provided to the pipeline
at runtime (e.g. git-token, OCI-registry-token, etc.).
Make sure these credentials are not hard-coded in
the definitions. In general, limit the use of hard-coded
configurations in the definitions.

11

https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md#securing-materials
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md#securing-materials
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md

The Secure Software Factory

Outputs
Artifacts
A software artifact is the principal output of the Secure
Software Factory. Artifacts may include binaries, software
packages, container images, signatures, and attestations. They
are what will be consumed by downstream users. Artifacts
should be accompanied by the appropriate metadata to
demonstrate their provenance (described below), stored in
a secure artifact repository, and distributed through secured
and well understood mechanisms. The exact nature of the
artifact itself and the implementation of these requirements
will vary depending on factors like language, package type,
and target platform(s). Therefore, these implementation
details are beyond the scope of the Secure Software Factory.

Public Signing Keys
In order to verify the signatures included in a software
factory’s metadata, downstream consumers will need the
public keys associated with those signatures.3 The root certif-
icates may be included as an output from the SSF, but they
should be distributed separately from the artifact and the
metadata itself to allow additional verification of the certif-
icate authenticity. Certificate chains linking the signing key to
a root certificate should be included as an output from the
SSF, and they should be distributed with the artifact being
signed, allowing verifiers to validate a signature is trusted by
an approved root certificate. As these keys should be iden-
tical to the cryptographic material used as an input to the
pipeline, the security considerations already discussed for
cryptographic material as inputs apply.

Metadata Documents
Throughout execution of the pipeline, a number of
metadata documents are generated. Examples include test
reports, vulnerability reports, and Software Bills of Material
(SBOMs). These documents are a snapshot of the build that
produced them. For example, a vulnerability report reflects
CVEs known at the time of the build, but might become
outdated as new vulnerabilities are discovered and shared.
Similarly, an SBOM reflects what is in a particular build. It

will always be valid for that build, but future builds with
slightly different dependencies/version constraints must
generate a new/updated SBOM. The following practices are
recommended for managing metadata documents:

1. Timestamp inclusion: Always explicitly include a time-
stamp associated with the document.4

2. Persistence: Make sure when stored that documents
are immutable, version controlled and signed.

3. Metadata Links: Link all metadata documents to the
final deliverable artifact. For example, for a microservice
application build pipeline, link the test, vulnerability,
and SBOM record to the particular container image they
are generated from.

Secure Software Factory
Functionality
This section goes through the primary actions that the SSF
performs in normal operation. It describes how a project
runs through the SSF and how the SSF helps secure the
supply chain by establishing and tracing provenance
through the build pipeline.

All Stages: Attesting Identity of Nodes, Pipeline
Orchestration, Tasks and Workloads and
Establishing Provenance

Actors:
• Scheduling and Orchestration Platform

• Pipeline

• Pipeline Observer

• Node Attestor

• Workload Attestor

• Metadata Storage

It is important to call out this sub-action as it happens in
most other actions of the SSF. This is the key piece of the
SSF in establishing and tracing provenance from source
code to artifact of a given project. This provenance can then

3 By using identity federation, it is possible for verification to be achieved without actual proof of possession of the keys. In cases where this is the
method of choice, public signing keys will not need to be provided.

4 Note that for Reproducible Builds, the timestamp may be extra metadata included alongside the document so that the content can be checked for
reproducibility.

12

The Secure Software Factory

be used in conjunction with other tooling and auditing to
better make claims on the veracity of software.

In general the following is how the action works though
there might be a few caveats specified in the other actions:

Initial Setup:

1. Spin up a node

2. Node Attestor establishes identity of node.

Action Steps:

1. Pipeline or Pipeline task is triggered/orchestrated

2. Workload Attestor establishes identity of Pipeline or
task

3. Pipeline Observer captures metadata for Pipeline or task.

a. This includes inputs, timestamps, outputs, as well
as other metadata

4. Pipeline Observer signs metadata with key or cert based
on identity provided by Workload Attestor

All Stages: Admissions
Control for the SSF itself
Actors:

• Scheduling and Orchestration Platform

• Pipeline

• Pipeline Observer

• Node Attestor

• Workload Attestor

• Metadata Storage

• Admission Controller

• Artifact Storage

As noted in the discussion of the Admissions Controller
above, both build workers (the containers performing
pipeline steps) and intermediate artifacts (the outputs of
previous steps passed along to the next steps in a build)
should be verified before they are admitted into the SSF.
This should be part of every stage in the pipeline.

Stage 1: Secure the data flow in the pipeline
As tasks execute inside a pipeline, they typically produce
some new artifacts like an image, binary or evidence report.
These artifacts are then consumed by subsequent tasks to
perform their respective functions. Such sharing of artifacts
between tasks normally achieved through shared storage
resources. It is important to regulate access to these shared
resources across tasks.

To achieve this objective, avoid using a single storage
workspace across all tasks in the pipeline. Create multiple
storage workspaces that are exclusively shared between
the tasks that need to communicate some data/results. For
instance, for a simple pipeline shown below, avoid using a
single shared storage for all tasks and use exclusive storage
sharing. And when possible set access-policies (RW, RO)
while mounting these storage in the tasks.

Stage 2: Configuration of Pipeline
Actors:

• Developer

• Tech Lead

• Security Engineer

• Scheduling and Orchestration Platform

• Pipeline Platform

The primary component configured as part of normal opera-
tion of the SSF is the Pipeline. Both creation of a new Pipeline
as well as modification of an existing Pipeline have similar
modes of operation and so this section represents both.

The secure software factory expects that you store pipeline
configuration as code and that the code is stored in a
secure source code repository with adequate controls.See
both “Source Code” and “Pipeline Definitions” in the inputs
section above for more information about the SSF’s expec-
tations regarding both of these types of inputs. The goal of
these controls is to make sure that the pipeline definition

13

The Secure Software Factory

itself has trustworthy provenance. In a cloud native context,
these components are often deployed as containers and
treated as artifacts in their own right. Ensuring we have
adequate provenance for those components increases our
assurance about the provenance of the artifacts they build.

When configuring and designing the pipeline, there consider
that:

• Individual tasks and steps should have limited in scope
and are well defined. sing templates and linting rules
during the development of the pipeline itself aids this.

• Configuring the pipeline to respond automatically to well-
defined triggers in the Software Development Life Cycle.

Stage 3: Trigger Pipeline
Actors:

• Developer

• Scheduling and Orchestration Platform

• Pipeline Platform

• Pipeline Observer

• Node Attestor

• Workload Attestor

• Metadata Storage

The first step in the SSF is that something triggers a pipeline.
This can be a manual, event-driven, or timed trigger.
Common triggers are web hooks and manual triggering
through an API call or dashboard. Regardless of what trigger
you use, parameters to the trigger that can affect the build,
like compile flags, should be restricted in order to minimize
the attack surface.

The SSF secures this by capturing and validating the inputs
and other metadata like timestamps through the Pipeline
Observer. This is then signed by a key or certificate provided
by the Workload Attestor that is associated with the identity
of the workload. The Workload Attestor then has its identity
attested to by the Node Attestor. This signed metadata is
then pushed to Metadata Storage where it becomes a supply
chain link that other parts of the SSF can link to and can later
be used to validate and audit veracity of the artifact(s) built in
the SSF.

Stage 4: Ingest Source for Project
Actors:

• Scheduling and Orchestration Platform

• Pipeline Platform

• Pipeline Observer

• Node Attestor

• Workload Attestor

• Metadata Storage

• External Source Code Control

After a build is triggered, the next step is ingesting the code
for the project. This is usually a call to a source code control
system to pull down a specific commit. It then hands the code
over to downstream pipeline tasks via shared storage for
things like the build stage.

Stage 5: Ingest Dependencies for Project
Actors:

• Scheduling and Orchestration Platform

• Pipeline Platform

• Pipeline Observer

• Node Attestor

• Workload Attestor

• Metadata Storage

• Internal/External dependency repos

After ingesting source code, the next step is to download
the dependencies for the artifact you are building. This is a
separate step from the ingestion of the source for a couple
of reasons. In line with the build best practices in this docu-
ment(reference here) and the CNCF Supply Chain Security
Best Practices whitepaper, the pipeline steps should be
kept as minimal and atomic as possible. In the case of this
step, it allows you to download the source and sign it as
a single atomic action. Then you can validate after down-
loading dependencies that the source code wasn’t changed
by a compromised dependency install. Some package
managers can run arbitrary execution actions on the system
without adequate controls.

Once dependencies are installed on shared storage they
are hashed and that metadata is signed and pushed to
Metadata Storage.

14

https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/sscsp.md

The Secure Software Factory

Stage 6: Run Build for Project
Actors:

• Scheduling and Orchestration Platform

• Pipeline Platform

• Pipeline Observer

• Node Attestor

• Workload Attestor

• Metadata Storage

This is arguably the most critical step of the Pipeline. This
step is the one that performs common “build” actions to
generate an artifact such as compilation, building an image,
etc. The build is a common attack vector in supply chain
attacks, therefore it is crucial to keep this step atomic,
minimal, and more importantly, hermetic.5 When available
you should strive for reproducible builds.6

The build process performs code compilation or transforma-
tion (e.g. source code to byte code for compiled languages).
Leverage pipeline observers to record the command,
options and parameters used during compilation.

Given the need for the build to be hermetic, the task
running the build should have no network or most other
external capabilities and have build parameters pushed
at the task level. The only external access the task should
have is to shared storage containing the source and depen-
dencies required. The build must write the artifact to new
shared storage explicitly for the artifact. More informa-
tion on this can be found in the “Build Worker Environment
and Commands” section of the Supply Chain Best Practices
paper.

After the operation of the build the metadata associated
with the build, e.g. input parameters, hash of produced
artifact, etc. are signed and pushed to Metadata Storage.

Stage 7: Publish Artifact
Actors:

• Scheduling and Orchestration Platform

• Pipeline Platform

• Pipeline Observer

• Node Attestor

• Workload Attestor

• Metadata Storage

• Artifact Storage

In the final build stage, compiled artifacts are packaged
into appropriate distribution format (container image, rpm,
tar.gz, etc.). Artifacts may be published to an artifact store,
external from the SSF. Artifacts must be hashed and signed
along with any applicable metadata that can be pulled
from the artifact. That signed metadata is then stored in
Metadata Storage.

5 A hermetic build is a self-contained build. This means that all the inputs must be defined in the build. This is often done by pinning all dependencies
based on cryptographic hashes. This also means the build should have no access to any resources not defined in the build, most commonly the
network.

6 A reproducible build is a build where given identical inputs the build generates identical bit for bit outputs.

15

The Secure Software Factory

Appendix A: Inputs and Outputs Summary
Inputs

Inputs of the SSF
Assumptions/Recommendations
About Those Inputs

What We’re Not Specifying in
this Version

Source Code • Version controlled with stored history
• Commits are signed
• History cannot be overwritten (no force merges)
• Has an appropriate testing and code review regime in place

• Where code is hosted
• Specific test types or tooling to use

Dependencies • Defined with version and immutable reference (e.g. hash)
constraints

• (ideally) something approximating an SBOM and/or source
of provenance

• Have appropriate update and review procedures in place

• Format of SBOM/Provenance for
dependencies

• Types of testing to perform on
dependencies

• Source repositories allowed for
dependencies

User Credentials • Users use MFA
• Users use SSH or PATs for repository access
• Users have signing certificates

• User roles/permissions
• Key/Certificate Rotation Policy
• How users are authenticated

Machine/Workload
Credentials

• Automatically rotated short-lived credentials to identity
application services

Signing keys • Meet or exceed current NIST guidelines for the type of key/
certificate with regards to length, randomness, etc.

• How keys/certificates are generated
and by whom?

• How keys/certificates are distributed
and by whom?

Pipeline Definitions • Maintained as Infrastructure-as-Code/Pipeline-as-Code
meeting all the above specs for Source Code, Dependencies,
User Credentials, etc.

• Builds task definitions

Build Images • Either bootstrapped or created by the SSF
• Signatures are verified by the SSF Admission Controller

Outputs

Ouputs of the SSF
Assumptions/Reccomendations
About those Inputs

What We’re Not Specifying in
this Version

Artifacts
(Requires addition)

• Includes signed and validated metadata in an appropriate
storage mechanism

• What storage mechanism to use
(unless we find there are really good
reasons to recommend one)

Public Signing Keys • Meet or exceed current NIST guidelines for the type of key/
certificate with regards to length, randomness, etc.

• How keys/certificates are generated
and by whom?

• How keys/certificates are distributed
and by whom?

Metadata Documents
(Requires addition)

• Must be in machine readable format
• Must be signed except in cases where it’s not supported by

tooling
• Should include references to other artifacts including

other metadata documents allowing for the creation of a
metadata document chain

• What formats to use

16

The Secure Software Factory

Appendix B: Best practices x Reference
Architecture

Stage Practice Categories

Securing the
Source Code

Verification: Commits and tags are signed Assurance: Moderate to high
Risk: Moderate to high

Verification: Enforce full attestation and verification for
protected branches

Assurance: High
Risk: High

Automation: Secrets are not committed to the source
code repository unless encrypted

Assurance: Moderate to high
Risk: Moderate to high

Automation: The individuals or teams with write access to
a repository are defined

Assurance: High
Risk: High

Automation:Automate software security scanning and
testing

Assurance: Moderate to high
Risk: Moderate to high

Controlled Environments: Establish and adhere to contri-
bution policies

Assurance: Moderate to high
Risk: Moderate to high

Controlled Environments: Define roles aligned to func-
tional responsibilities

Assurance: Moderate to high
Risk: Moderate to high

Controlled Environments: Enforce an independent
four-eyes principle

Assurance: Moderate to high
Risk: Moderate to high

Controlled Environments: Use branch protection rules Assurance: Moderate to high
Risk: Moderate to high

Secure Authentication: Enforce MFA for accessing source
code repositories

Assurance: Moderate to high
Risk: Moderate to high

Secure Authentication: Use SSH keys to provide devel-
opers access to source code repositories

Assurance: Moderate to high
Risk: Moderate to high

Secure Authentication: Have a Key Rotation Policy Assurance: Moderate to high
Risk: Moderate to high

Secure Authentication: Use short-lived/ephemeral creden-
tials for machine/service access

Assurance: Moderate to high
Risk: Moderate to high

Securing the
Materials

Verification: Verify third party artifacts and open source
libraries

Assurance: Moderate to high
Risk: Moderate to high

Verification: Require SBOM from third party suppliers Assurance: Moderate to high
Risk: High

Verification: Track dependencies between open source
components

Assurance: Moderate to high
Risk: Moderate to high

Verification: Build libraries based upon source code Assurance: High
Risk: High

Verification: Define and prioritize trusted package
managers and repositories

Assurance: High
Risk: High

Verification: Generate an immutable SBOM of the code Assurance: Moderate to high
Risk: Moderate to high

17

The Secure Software Factory

Stage Practice Categories

Automation: Scan software for vulnerabilities Assurance: Moderate to high
Risk: Moderate to high

Automation: Scan software for license implications Assurance: Moderate to high
Risk: Moderate to high

Automation: Run software composition analysis on
ingested software

Assurance: Moderate to high
Risk: Moderate to high

Securing the Build
Pipelines

Verification: Cryptographically guarantee policy
adherence

Assurance: High
Risk: High

Verification: Validate environments and dependencies
before usage

Assurance: Moderate to high
Risk: Moderate to high

Verification: Validate runtime security of build workers Assurance: Moderate to high
Risk: Moderate to high

Verification: Validate Build artifacts through verifiably
reproducible builds

Assurance: High
Risk: High

Reproducible Builds: Lock and Verify External
Requirements From The Build Process

Assurance: Moderate to high
Risk: Moderate to high

Reproducible Builds: Find and Eliminate Sources Of
Non-Determinism

Assurance: Moderate to high
Risk: Moderate to high

Reproducible Builds: Record The Build Environment Assurance: High
Risk: High

Reproducible Builds: Automate Creation Of The Build
Environment

Assurance: High
Risk: High

Reproducible Builds: Distribute Builds Across Different
Infrastructure

Assurance: High
Risk: High

Automation: Build and related continuous integration/
continuous delivery steps should all be automated
through a pipeline defined as code

Assurance: Moderate to high
Risk: Moderate to high

Automation: Standardize pipelines across projects Assurance: Moderate to high
Risk: Moderate to high

Automation: Provision a secured orchestration platform
to host software factory

Assurance: Moderate to high
Risk: Moderate to high

Automation: Build Workers Should be Single Use Assurance: High
Risk: Moderate

Controlled Environments: Ensure Software Factory has
minimal network connectivity

Assurance: High
Risk: High

Controlled Environments: Segregate the Duties of Each
Build Worker

Assurance: High
Risk: High

Controlled Environments: Pass in Build Worker
Environment and Commands

Assurance: High
Risk: High

Controlled Environments: Write Output to a Separate
Secured Storage Repo

Assurance: High
Risk: High

18

The Secure Software Factory

Stage Practice Categories

Secure Authentication/Access:
Only allow pipeline modifications through “pipeline as
code”

Assurance: Moderate to high
Risk: Moderate to high

Secure Authentication/Access: Define user roles Assurance: Moderate to high
Risk: Moderate to high

Secure Authentication/Access: Follow established prac-
tices for establishing a root of trust from an offline source

Assurance: High
Risk: High

Secure Authentication/Access: Use short-lived Workload
Certificates

Assurance: High
Risk: High

Securing the
Artifacts

Verification: Every step in the build process should be
signed/attested for process integrity

Assurance: Moderate to high
Risk: Moderate to high

Verification: Every step in the build process should verify
the previously generated signatures

Assurance: Moderate to high
Risk: Moderate to high

Automation: Use TUF/Notary to manage signing of
artifacts

Assurance: Moderate to high
Risk: Moderate to high

Automation: Use a store to manage attestations Assurance: Moderate to high
Risk: Moderate to high

Controlled Environments: Limit which artifacts any given
party is authorized to certify

Assurance: High
Risk: High

Controlled Environments: Rotation and revokation of
private keys should be supported

Assurance: High
Risk: High

Controlled Environments: Use a container registry that
supports OCI image-spec images

Assurance: High
Risk: High

Encryption: Encrypt artifacts before distribution & ensure
only authorized platforms have decryption capabilities

Assurance: High
Risk: High

Securing
Deployments

Verification:
Ensure clients can perform Verification of Artifacts and
associated metadata

Assurance: Moderate to high
Risk: Moderate to high

Verification: Ensure clients can verify the “freshness” of
files

Assurance: Moderate to high
Risk: Moderate to high

Automation: Use a framework for managing software
updates

Assurance: High
Risk: High

19

The Secure Software Factory

Appendix C: Glossary
SSF — Secure Software Factory
SAST — Static Application Security
Testing
DAST — Dynamic Application Security
Testing
NIST — National Institute of Standards
and Technology

SBOM — Software Bill of Materials
MFA — Multi-factor Authentication
SSH — Secure Shell
PAT — Personal Access Token
API — Application Programmable
Interface
.rpm — Redhat Package format

.deb — Debian package format

.tar.gz — Compression and packaging
format (tar — abbreviation of tape
archive)

Contributors
Aditya Sirish A Yelgundhalli (NYU)

Alexander Floyd Marshall (Raft)

Andres Vega (VMware)

Andrew Block (Red Hat)

Aradhna Chetal (TIAA)

Axel Simon (Red Hat)

Brandon Lum (Google)

Brandon Mitchell (IBM)

Cole Kennedy (TestifySec)

Dan Papandrea (Sysdig)

Glaicimar Aguiar
(Hewlett Packard Enterprise)

Jason Hall (Red Hat)

John Kjell (VMware)

Marina Moore (NYU)

Matt Moore (Chainguard)

Michael Lieberman (Citi)

Parth Patel (IBM)

Priya Wadhwa (Chainguard)

Shripad Nadgowda
(IBM T.J. Watson Research Center)

20

The Secure Software Factory

Acknowledgements
The Cloud Native Computing Foundation supported the creation of this reference architecture. As with the “Best
Practices for Supply Chain Security”, the authors followed a “collaborative knowledge production” methodology. This
effort took place over the span of five months of weekly online meetings. The majority of authors are members of the
CNCF Technical Advisory Group for Security, which you can join. Go to the TAG repository site.

This was a remarkable collaboration between large technology companies and startups.

The coordination and facilitation was provided by Andres Vega (VMware), Brandon Lum (Google), Dan “Pop” Papandrea
(Sysdig) and Michael Liebermann (Citi).

We’d also like to thank a number of contributors from whom we had excellent input and feedback and as leading practi-
tioners in the field did much of the work that we write about in this document:

Aeva Black

Allan Friedman

Dan Lorenc

David Wheeler

Ed Warnicke

Emily Fox

Frederick Kautz

Jacques Chester

Jonathan Meadows

Justin Cormack

Remy Greinhofer

Tiffany Jordan

References
Software Factory: https://en.wikipedia.org/wiki/Software_factory

CNCF TAG-Security: https://github.com/cncf/tag-security

CNCF Supply Chain Security Paper: https://github.com/cncf/tag-security/blob/main/supply-chain-security/
supply-chain-security-paper/CNCF_SSCP_v1.pdf

CNCF Cloud Native Security Whitepaper: https://github.com/cncf/tag-security/blob/main/security-whitepaper/CNCF_
cloud-native-security-whitepaper-Nov2020.pdf

Kubernetes Policy Management Whitepaper: https://github.com/kubernetes/sig-security/blob/main/sig-security-docs/
papers/policy/CNCF_Kubernetes_Policy_Management_WhitePaper_v1.pdf

21

https://github.com/cncf/tag-security
https://en.wikipedia.org/wiki/Software_factory
https://github.com/cncf/tag-security
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://github.com/cncf/tag-security/blob/main/security-whitepaper/CNCF_cloud-native-security-whitepaper-Nov2020.pdf
https://github.com/cncf/tag-security/blob/main/security-whitepaper/CNCF_cloud-native-security-whitepaper-Nov2020.pdf
https://github.com/kubernetes/sig-security/blob/main/sig-security-docs/papers/policy/CNCF_Kubernetes_Policy_Management_WhitePaper_v1.pdf
https://github.com/kubernetes/sig-security/blob/main/sig-security-docs/papers/policy/CNCF_Kubernetes_Policy_Management_WhitePaper_v1.pdf

	Introduction
	Problem Scope: Software Supply Chain Security
	How to Read This Document

	The Secure Software Factory
	Components of the SSF
	The Variables—Inputs and Outputs to and from the SSF
	Inputs
	Outputs
	Secure Software Factory Functionality

	Appendix A: Inputs and Outputs Summary
	Inputs
	Outputs

	Appendix B: Best practices x Reference Architecture
	Appendix C: Glossary
	Contributors
	Acknowledgements
	References

